Tuesday, October 27, 2020

How Ultrasonic Cleaners Safely and Effectively Clean Without Chemicals


Traditional cleaning of industrial parts, mechanical components, and electronics has typically involved manual scrubbing, pressure washing, and soaking in aggressive chemicals. These cleaning methods can damage the surfaces of the parts being cleaned and they do not guarantee thorough cleaning.

Ultrasonic cleaners work without the use of harsh chemicals and clean parts quickly and completely. Eliminating chemicals and reducing the use of water saves money and also provides a safer work place. The effective use of industrial ultrasonic cleaners requires selecting the right frequency and power which an ultrasonic cleaner manufacturer can provide based on the specific cleaning application.

Ultrasonic cleaners work by generating millions of microscopic bubbles in the cleaning solution. An ultrasonic generator produces a high-frequency electric signal for an ultrasonic transducer. The transducer is immersed in the cleaning bath and vibrates in tune with the electric signal. The transducer vibrations produce ultrasonic sound waves throughout the cleaning action.

Ultrasonic sound waves have high-pressure peaks and low-pressure troughs. The microscopic cavitation bubbles form in the low-pressure troughs and collapse in the high-pressure peaks. When the bubbles collapse, they emit a tiny high-pressure jet that hits the parts' surface to be cleaned and dislodges dirt and contaminants. These jets deliver a powerful mechanical cleaning action that works faster and better than traditional manual scrubbing or cleaning with chemicals.

Ultrasonic cleaners also clean the parts more thoroughly compared to traditional cleaning methods. They can also be fine-tuned for the specific cleaning application. The selection of the right frequency is critical to produce the best cleaning results. Low frequencies (20 to 30 kHz) produce comparatively large cavitation bubbles that make tiny, powerful jets. These frequencies are best suited for parts with hard surfaces. As the frequencies increase, the cavitation bubbles become smaller, and the cleaning action becomes less intense. Higher frequencies of several hundred kHz are suitable for cleaning delicate and fragile parts.

Once the right frequency is chosen, the ultrasonic sound waves penetrate everywhere throughout the cleaning solution. The jets from the collapsing bubbles clean inside holes, along with cracks and over rough surfaces, which traditional cleaning methods cannot do. Dirt and contaminants are removed completely, resulting in parts that are thoroughly cleaned.

With extensive experience with industrial ultrasonic cleaning equipment, Kaijo has the expertise to carry out the design and manufacturing in-house.

For more details, read the complete article “How Ultrasonic Cleaners Safely and Effectively Clean without Chemicals.” If you have questions or would like to set up a free consultation to discuss your particular needs, contact Kaijo at 408-675-557 or email info@kaijo-shibuya.com.

Thursday, October 15, 2020

How Ultrasonic Cleaners Are Used to Provide Effective Infection Control


Invasive surgical techniques are being used more frequently, and the tools and instruments used in these procedures can't be easily cleaned or sterilized with high temperatures. Many of these tools and instruments are hard to clean and many are temperature sensitive. They also have complex shapes and features that can harbor contamination and pathogens.

Manual ultrasonic cleaners are used to clean these kinds of tools and instruments. Ultrasonic cleaning performance is excellent but does not, by itself, guarantee that an instrument or tool is sterile. However when the appropriate amount of disinfectant is added to the cleaning solution, the action of the ultrasonic cleaning forces the liquid into crevices and holes where it can kill microbes on contact. The sound waves clean the surfaces of tools and instruments and the dislodged matter is removed, leaving the disinfected parts. Together with a disinfecting cleaning solution, an ultrasonic cleaner is a better alternative to steam sterilization.

Ultrasonic cleaners work by using an ultrasonic transducer to convert a high-frequency electrical signal to ultrasonic sound waves in the cleaning solution. The transducer (mounted in the tank) vibrates in tune with the electrical signal to create sound waves throughout the cleaning bath. Microscopic cavitation bubbles are created in the low-pressure troughs of the ultrasonic waves and collapse in the high-pressure peaks.

As each of the cavitation bubbles collapses, it creates a powerful suction effect that dislodges microbes and contaminates particles from the parts' surfaces to be cleaned. Once dislodged, the microbes are fully in contact with the cleaning solution's disinfectant and are killed. You can find details of the type of disinfectant that works best for ultrasonic cleaning by referring to the website "Infection Control Today".

Here are the key factors to consider when using medical ultrasonic cleaners to clean surgical tools and instruments:

  • Size of the cleaning tank – It should be sized with the largest dimension longer than the length of the largest part. Often, a basket is used to hold the smaller components and keep them from vibrating against the tank's sides.
  • Power required – The ultrasonic cleaning system should have enough power to fill the cleaning tank with the ultrasonic waves.
  • Frequency – Choosing the wrong frequency can lead to damage to these surgical tools and instruments, many of which contain soft, delicate, or fragile parts and components. Low frequencies produce comparatively bigger cavitation bubbles and a robust cleaning action, which can damage fragile parts.

For more details, read the complete article, “How Ultrasonic Cleaners Are Used to Provide Effective Infection Control.” You may contact Kaijo Shibuya if you would like to set up a free consultation by calling them at 408-676-5575 or sending an email to info@kaijo-shibuya.com.