Showing posts with label Ultrasonic Cleaning Equipment. Show all posts
Showing posts with label Ultrasonic Cleaning Equipment. Show all posts

Friday, November 2, 2018

Why Ultrasonic Cleaners Are the Best Alternative to Cleaning with Toxic Solvents

Traditional industrial cleaning methods involve cleaning parts using toxic chemicals and mechanical scrubbing to dissolve and remove surface contaminants and residues. However, the cost of the cleaning chemicals, as well as their handling and disposal, continues to rise. The best alternative to traditional industrial cleaning methods is the use of Industrial ultrasonic cleaners. Ultrasonic cleaning effectively removes surface contaminants from a wide variety of parts made from different materials but does not require the use of toxic chemicals and intense scrubbing.

How does ultrasonic cleaning equipment work? It uses the scrubbing effect of microscopic cavitation bubbles produced by ultrasonic waves in the cleaning solution. The cavitation bubbles are formed in the low-pressure regions of the ultrasonic sound waves and they collapse in the high-pressure peaks. The continuous formation and collapse of the microscopic bubbles create the powerful cleaning and scrubbing action where they effectively dislodge dirt and contaminants from the surfaces of the parts being cleaned.

Kaijo’s ultrasonic cleaning equipment is a cost-effective alternative to traditional cleaning methods. There is no need to soak the parts or wash them in aggressive cleaning solvents. Since it uses only water and sound waves, ultrasonic cleaning is safe. Plus, ultrasonic cleaning is faster and much more efficient. It can dislodge contaminants without damaging the parts being cleaned when the right frequency and power is applied. For cleaning more stubborn deposits, a mild detergent is sometimes used along with the use of a tank heater to heat the cleaning solution.

Ultrasonic cleaning does not also need special storage or handling facilities and does not have regulatory oversight of for waste disposal.


Read our complete article “Why Ultrasonic Cleaners Are the Best Alternative to Cleaning with Toxic Solvents” to learn more about the benefits of using ultrasonic cleaners. Call 408-675-5575, or email info@kaijo-shibuya.com if you would like to discuss how Kaijo’s equipment can be used in your cleaning application.

Thursday, May 31, 2018

How Ultrasonic Cleaning Systems Are Used to Clean Industrial Lenses

Ultrasonic cleaning systems can effectively clean glass lenses, however due to the special characteristics of lenses, selecting the correct ultrasonic frequency, power and bath is critical.

Industrial lenses that are made of pure glass are ideal candidates for ultrasonic cleaning. The ultrasonic generator produces high-frequency electronic signal, and the transducer immersed in the ultrasonic bath converts that signal to ultrasonic waves within the liquid.  The waves within the cleaning bath generate cavitation bubbles in the pressure troughs, and then they collapse in the pressure peaks. The action of the cavitation bubbles produces a powerful scrubbing and cleaning action against the hard surfaces of the lenses, dislodging contaminants from the surface.

While glass itself would not be affected by ultrasonic cleaning systems, it may have been treated with a special coating or surface treatments that can be damaged at certain frequencies, in heated baths or when used with added detergents.

Lower frequencies – Produce larger cavitation bubbles with a more robust cleaning action.

High frequencies – Produce smaller cavitation bubbles with a gentler cleaning action.

The power produced by the ultrasonic system affects the cleaning time. If the power is too low, too few bubbles are generated, and the cleaning process will take longer. The power level should be exactly enough so that it can produce the maximum amount of cavitation bubbles that will allow the quickest and most thorough cleaning action on industrial lenses.

Robust cleaning with the addition of detergents and/or heat will speed up the cleaning process on pure glass lens. However, if the lens has any coating, the same cleaning measures may damage the lens coating. Thus, the required frequency for cleaning coated glass lenses must be high enough to avoid damaging coatings that are softer than pure glass.


The complete article, “How Ultrasonic Cleaning Systems Are Used to Clean Industrial Lenses” goes into more detail. If you would like additional information, or have questions, please contact Kaijo through email at info@kaijo-shibuya.com or call (408) 675-5575.